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Abstract--Using a two-phase fluid flow model based on kinetic theory for granular flow the oscillatory 
flow of sand in an hourglass first observed experimentally by Wu et al. has been simulated. The oscillations 
appear to be caused by the interaction between the gas pressure and the flow of sand through the orifice 
of the hourglass. The simulations confirm the ticking of the hourglass and the suggested mechanisms for 
this behaviour found experimentally by Wu et aL The simulations also show bubbles of air rising through 
the powder as observed experimentally. 
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I N T R O D U C T I O N  

The flow in hourglasses made for commercial  use is normally steady. Recently, a new surprising 
effect has been observed by Wu et al. (1993). When the particle diameter o f  the solid is small, 
dp ,-, 10-100/~m, the flow o f  solid is only steady in the narrow range 2 < D/dp < 12, where D is the 
diameter o f  the orifice. For  D / d  o > 12, the flow is intermittent with a well-defined frequency of  
oscillations. 

This paper  presents simulations o f  this part icular phenomena.  We use a two-phase fluid model 
for space sharing interspersed cont inua  to describe the system. Kinetic theory for granular  flow 
(Gidaspow 1994) is used to determine the fluctuations in the particle phase. Likewise, the solid 
phase pressure, bulk viscosity and shear viscosity are deduced f rom this theory. 

First we give a brief overview o f  the governing equations and the numerical solution procedure.  
Then, the numerical results are presented. Finally, the validity o f  the numerical results is discussed, 
and conclusions are drawn. 

G O V E R N I N G  E Q U A T I O N S  

Using physical covariant  velocity projections, the conservat ion laws governing the two-phase 
air-particle flow (Gidaspow 1994) are formulated in general curvilinear co-ordinates.  

The continui ty equations read 

Ol (¢P)" + (gimEPUm)n = 0 

where n = G (gas) or  s (solid). Here E denotes the volume fraction and p is the density o f  phase 
n. Um is the m - c o m p o n e n t  o f  the physical, covariant  velocity projection and g~" is the contravar iant  
metric tensor component .  A/A~ ~ denotes the divergence in the curvilinear co-ordinate  system. 

Likewise, the m o m e n t u m  equat ions are given by 

A ~p A 
c~ (Ep ~)~ + (g'mEpUmUj).= (Z, j) .+(Ep).bj+[3j[(Uj)N--(Uj) .]  + 

where p is the pressure, c~/c~ j is the partial derivative with respect to ~ ,  bj is the j - c o m p o n e n t  o f  
the body  force and/~:  is the j - c o m p o n e n t  o f  the two-phase drag coefficient. 
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The stress tensor ~u for the gas phase is expressed as 

and for the solid phase as 

Here ~GJ is the laminar gas viscosity and 6 u is the Kroenecker delta. The solid phase pressure Ps, 
bulk viscosity ~s and shear viscosity/t S are derived from kinetic theory for granular flow, giving 
the following expressions: 

P, = ¢,p~(1 + 2(1 + e)e~sgo)O 
42 1 ~=~¢~p~dpgo( +e) 

_ 2/~s,d,t [1 +4(1 +e)goEsl2+4E~psdpgo(l + e ) ¢  
/~s (1 +e)g0 

Here e is the restitution coefficient and 6) is the turbulent kinetic energy for the solid phase. The 
dilute part of the shear viscosity ~.d~ and the radial distribution function go are given by 

71 X(s .max/  _.1 

where E ..... is the maximum packing of  solids, assumed here to be 0.65. 
Again from kinetic theory for granular flow, the turbulent kinetic energy O of  the solid phase 

is governed by the transport equation 

7 ~t (EpO)s+ (g"EpU.,O)~ =(~,,.).A-~(g~.,u,.),+ L g oX~j-), 
The dissipation 7 in this equation, found from kinetic theory, is given by an algebraic expression 

~ 2 F4 /O A ,1 q 
? = 3 ( , -  e-),s,Osg0OL~ ~/7 - - ~ ( g  Ui)sJ 

The transport coefficient has the form 

2Fo.d,, 
[1 + 6(1 + e)g0~] 2 + 2E~p~dpgo(l + e) /~ Fo - ( 1  + e ) g o  + 

where 
rO.dli= ]@4Psdp~ 

Finally, the drag expressions must be formulated. For Cc~ ~< 0.8, the drag is based on the Ergun 
equation giving 
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Figure 1. Grid used in the simulations. 
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Figure 2. Void fraction of powder at different times, t o = 1.0 s and At = 0.4 s. 

2 EsRGIUG - Usl 
l / =  150 Es#G,l + 1.75 

Eo(dp s) 2 

and for EG > 0.8, the drag is based on the Single sphere drag resulting in 

fl 3 lUG -- Us IpGEGEs E~2.65 
=~Cd 

where ~ is the form factor for the particles. The drag coefficient is given by 

24 
C d =~ee(]  +0 .15  Re °687) for Re ~< I000 

Cd = 0.44 for Re > 1000 

and the Reynolds number for particulate flow is defined as 

Re = lUG - U~IEGRGdp 
# G , I  

Only a brief description of  the model is given above. A more comprehensive description can be 
found in Gidaspow (1994). 

S O L U T I O N  P R O C E D U R E  

The governing equations are solved by a finite volume method (Patankar 1980). The calculation 
domain is divided into a finite number of  control volumes, and the grid points are defined such 
that each grid point is surrounded by a control volume. By integrating the conservation equations 
in space and time, the set of  differential equations transform to a set of  algebraic difference 
equations for each control volume. Upwind spatial differencing and fully implicit Euler temporal 
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Figure 3. The total mass flow through the hourglass. The simulation results are shown to the left, and 
the experimental results to the right. The simulations show larger mass transport for larger particle 

diameter, with particle diameters between 20 and 127~m. 
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Figure 4. The mass flux through the orifice of the hourglass for various particle diameters. The largest 

particle diameter is shown at the top with decreasing particle diameter downwards. 

differencing are adopted. The discretization procedure based on a staggered grid follows that of 
Karki & Patankar (1988) for general non-orthogonal co-ordinates. 

Because of the strong coupling between the phases through the drag forces, a PEA-algorithm 
(partial elimination algorithm) (Spalding 1985) is introduced to decouple the momentum equations. 
The coupling between the continuity and the momentum equations is taken care of by the 
SIMPLE-algorithm (semi-implicit method for pressure linked equations) (Patankar 1980). 

N U M E R I C A L  RESULTS 

Figure 1 shows the hourglass along with the curvilinear grid used in the simulations. The 
diameter of  the orifice of the hourglass is 0.2 cm. Although the hourglass is axisymmetric, the 
present study is limited to a planar geometry. Still, the qualitative properties should be maintained. 
The main issue of this study will therefore be to demonstrate the qualitative behaviour of the model 
rather than to achieve perfect agreement between simulation results and experimental results. 

Figure 2 shows the void fraction of powder at time intervals of 0.4 s, starting at t = 1.0 s with 
particle diameter d r = 81 #m. The simulation clearly shows that the powder flow is discontinuous. 
This is related to the gas bubble which is formed in the solid phase when the flow of particles 
through the orifice is zero. The bubble rises upwards through the powder and breaks at the powder 
surface. Such bubbles have been observed experimentally by Wu et al. (1993). 

In order to verify the two-phase particulate flow modelling based on kinetic theory for granular 
flow, simulations with six different particle sizes are performed. The chosen particle diameters are 
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Figure 5. The average mass transfer per avalanche for various particle diameters. The simulation results 
are again shown in the left figure. 
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Figure 6. The cumulative mass distribution N(AM > AM*) found from simulations and from exper- 
iments with experimental results shown to the right. The markers are for the following sizes: 0.41/lm (O), 

58/~m (O), 81/~m (+), 100#m (x), ll51tm (11) and 127/Lm (V). 

1.5 

20, 41, 58, 81, 100, 115 and 127ktm, covering the range 16 <<, D/dp<~ 100. The experimental 
investigations of  Wu et al. (1993) were carried out with the particle diameters 41, 58, 81, 115 and 
168 pm.  

In the following section, the numerical results are compared with the experimental results of  Wu 
et al. (1993). In the figures, the numerical results are shown to the left and the experimental results 
to the right. 

Figure 3 shows the simulated total mass through the orifice compared with the experimental 
results. The simulations and the experimental results show qualitatively similar oscillatory flow. 

The flux through the orifice of  the hourglass is shown in figure 4 as a function of  time. This figure 
shows how the transport  through the orifice oscillates with time. An intermittent flow is obtained 
with a well defined period of oscillations. The figure also shows that for D/dp >1 49 (d o ~< 41/~m), 
the oscillations decay and eventually the flow through the orifice becomes steady. 

The average mass transfer per avalanche, AM, is shown for various particle diameters in figure 
5. Simulations show that AM increases with increasing particle diameter as found experimentally. 
There is, however, some discrepancy in the values, and note that this discrepancy increases with 
larger particle sizes. A general trend for the simulations is that larger particle sizes result in larger 
deviations from measurements. 

Figure 6 shows the cumulative mass distribution N ( A M  > AM*). The simulations give reason- 
able agreement with experimental results for small particle diameters, but the discrepancy increases 
as the particle size grows. Again, the numerical results follow the general trend mentioned earlier. 
For  large particle diameters, the simulated throughput of  the orifice is much too low. 
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Figure 7. The cumulative time distribution N(At > At*) found from simulations and from experiments 
with experimental results to the right. The markers are the same as in the previous figure. 
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Figure 8. The time interval of the active period in the oscillations for different particle diameters. 
Simulation results are shown in the left figure. 

The results above have, by means of theory, shown that the hourglass will tick. There will be 
an active phase with time interval Z,, where the sand flows through the orifice of  the hourglass, 
and there will be an inactive phase where there is no flow through the orifice. The total period of 
the oscillations, T, is defined (Wu et al. 1993) as the sum of time intervals for these two phases 
for one avalanche. 

The cumulative time distribution for the total period T is shown in figure 7. The simulations give 
a much sharper distribution compared to the experimental results. However, the general distri- 
bution function for the simulations agrees well with the corresponding experimental function with 
approximately the same average value. 

Figure 8 shows the average time interval of  the active phase defined above. As demonstrated 
earlier, there is good agreement when the particle size is small, but the discrepancy increases with 
increasing particle diameter. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

The flow of sand in an hourglass has been simulated using a two-phase flow model based on 
kinetic theory for granular flow. The simulations show qualitative agreement with the experimental 
findings of  Wu et al. (1993). Like the measurements, the simulations indicate an oscillatory flow 
of sand through the orifice of  the hourglass with a well defined period of oscillations for the 
diameter of  the orifice to the particle diameter ratio D/dp >1 16. Both experiments and simulations 
indicate that the oscillatory flow is induced by a gas bubble which is formed in the solid phase at 
the orifice. The bubble rises through the sand and breaks at the surface. Unlike the experiments, 
the simulations indicate that the flow of sand through the orifice is steady for a ratio D/dp >~ 49. 

Quantitative comparisons with the measurements of Wu et al. (1993) show significant deviations 
in the simulations. Part of the discrepancies may be explained by limitations in the physical model 
as well as the numerical differencing scheme. First of  all, the simulations are limited to a planar 
geometry whereas the experimental hourglass is axisymmetric. Furthermore, the two-phase flow 
model is based on a continuum approach. As the ratio D/dp becomes smaller, the flow of sand 
through the orifice can eventually not be treated as a continuum any longer. Likewise, the 
two-phase model is based on fluidization of the solid phase. Only the flow of sand just above and 
through the orifice can, however, be characterized as being fluidized. Finally, the numerical 
differencing scheme is not optimal. A numerical scheme based on fully implicit Euler temporal and 
upwind spatial differencing is well known to produce artificial damping or smearing. 
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